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A method is proposed to go beyond the SCF result in the calculation of the ground state energies 
without any variational procedure. One chooses a set of reasonable bonding and antibonding orbitals 
localized on the chemical bonds. The bonding orbitals are used to built a fully localized determinant. 
The basis of excited states is built using the antihonding orbitals. One calculates the lower eigenvalue 
of the CI matrix in this basis by a Rayleigh-Schr6dinger expansion. The conceptual and practical 
advantages of the method are discussed, and the perturbation series is specified in order to satisfy 
the linked cluster theorem conditions and to retain the advantages of the Epstein-Nesbet partition 
of the Hamiltonian. 

Es wird eine Methode angegeben, die die SCF-Resultate in der Berechnung der Grundzustands- 
energien tibertrifft, ohne die Mittel der Variationsrechnung anzuwenden. Als Basisfunktionen w~hlt 
man einen Satz geeigneter bindender and antibindender Orbitale, die auf den chemischen Bindungen 
lokalisiert sind. Die bindenden Orbitale werden zum Aufbau einer v611ig lokalisierten Determinante 
benutzt. Als Basisfunktionen ftir die angeregten Zust[inde benutzt man auch antibindende Orbitale. 
Man berechnet den tieferen Eigenwert der CI Matrix mit dieser Basis durch eine Rayleigh-Schr6dinger- 
Entwicklung. Die begriffiichen und praktischen Vorteile dieser Methode werden diskutiert. Indem 
man die St~Srungsreihe so w~ihlt, dab das "linked cluster"-Theorem erftillt ist, bleiben die Vorteile der 
Epstein-Nesbet-Aufspaltung des Hamiltonoperators erhalten. 

On propose une m6thode pour d6passer la valeur SCF dans le calcul de l'6nergie de l'6tat fonda- 
mental en 6vitant tout proc6d6 variationnel. On choisit un jeu raisonnable d'orbitales liantes et anti- 
liantes sur les liaisons chimiques. Le d6terminant totalemcnt localis6 est b~ti ~t l'aide des orbitales 
liantes. Les orbitales antiliantes servent ~ construire les &ats excit6s, base de la matrice d'Interaction 
de Configuration. La plus basse valeur propre de celle-ci est d~velopp6e par perturbation. Les avantages 
conceptuels et pratiques de la m6thode sont discut~s. On pr6cise une s6rie de perturbation qui permet 
de combiner les avantages du th6or~me du linked cluster et de la partition Epstein-Nesbet de l'Hamil- 
tonien. 

1. Introduction 

The  Chemical Formula as a Zeroth Order Approximation 

I t  is wel l  k n o w n  t h a t  b o n d  add i t i v i t y  is a useful  first a p p r o x i m a t i o n  for  t he  

e v a l u a t i o n  of  m a n y  o b s e r v a b l e s  (d ipole  m o m e n t s ,  hea t s  o f  f o r m a t i o n ,  etc.). 

A n a t u r a l  w a y  to  i m p r o v e  this  e m p i r i c a l  m o d e l  was  to  t a k e  i n t o  a c c o u n t  b o n d -  
i n t e r a c t i o n s  a n d  l o n g  t i m e  a g o  P la t t  [1]  p r o p o s e d  e m p i r i c a l  sys t ema t i c s  to  d o  so. 
K.  I t o  [2]  i m p r o v e d  this  m o d e l  a n d  go t  a v e r y  n ice  a g r e e m e n t  w i th  e x p e r i m e n t a l  
hea t s  o f  f o r m a t i o n  a n d  di f ferences  in ene rg ies  o f  i s o m e r s  of  m a n y  s a t u r a t e d  h y d r o -  

c a r b o n s  [3].  These  a p p r o a c h e s  a re  n o t  f r equen t l y  used  now,  a n d  m o s t  p e o p l e  
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seem to prefer the better standing of quantum mechanical methods, even when 
fully parametrized and with poor reliability. 

Theory, however, has legitimized these empirical systematics. Early theoretical 
representations of polyatomic molecules in the LCAO-SCF scheme ignored the 
concept of the chemical bond. Lennard-Jones and Hall [4] demonstrated that 
one may extract bonds from the molecular SCF wave function, and empirical 
applications by Hall [5], Brown [6] and Dewar and Pettit [7] gave a justification 
of the systematics of bond and bond interaction energies. 

But these works were derived in the single-determinant approximation and 
in general in the framework of the Hartree-Fock method. The criteria proposed 
later by Boys [8], Edmiston and Ruedenberg [9], Magnasco and Perico [10] 
were used to transform the canonical molecular orbitals into localized molecular 
orbitals, keeping the SCF determinant invariant. Quantum chemistry generally 
went back to the chemical bond through the Hartree Fock approximation and 
it had only a conceptual interest. 

Today the SCF wave function is no longer the unique goal and it becomes a 
step in processes which try to go further towards the exact energy and the exact 
wave function. To do so one may use variational or perturbational procedures. 
In correlation problems it is well known now that the use of localized virtual or- 
bitals improves the result of the various approximations proposed to calculate 
the correlation energy. This had been suggested by Sinano~lu [11] and Nesbet [12]. 
From the "early" work of Watson [13] it has been verified many times for atoms 
that it was worthwile to localize the virtual orbitals in that region where the occu- 
pied orbitals have a high density. The same need occurs in small molecules [14, 15]. 
In large molecules, when one calculates the correlation energy with the minimal 
basis set, the virtual and occupied orbitals are already defined in the same region. 
But the relocalization of the occupied orbitals on bonding bond orbitals, and of 
the virtual orbitals on,antibonding orbitals defined on the same bonds, increases 
the interactions of the ground state with the doubly excited states and provides 
a better result in the pair APSG method [16] and a better second order correla- 
tion energy [17]. 

Under these conditions the question becomes: is it really necessary to go 
through the SCF procedure? Instead of making a long variational calculation 
and then a long localization procedure starting from a zeroth order wave-function 
which is close to the chemical formula, why should one not start from a wave 
function built with molecular orbitals fully localized on the chemical bonds 
(FLBO)? Can we not consider the chemical formula as a reasonable zeroth order 
approximation? 

There have been some attempts in atomic problems to avoid the SCF step. 
Such are the Z expansion [18] and recent works by Goodisman [19] and Musher 
[20]. Tolmatchev even started from hydrogenoid orbitals without any screening 
effect [21]. When the starting point is good enough the process seems to converge. 
In our problem the delocalization is not very important. In conjugated and aro- 
matic systems, various criteria give strongly localized pairs of electrons from the 
SCF orbitals (98 % in linear polyenes, 88 % in benzene, 90 % in naphtalene) [22]. 
In cr systems calculated with the CNDO approximation the delocalization does 
not exceed 1 or 2% [17]. Thus a fully localized determinant representing the 
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chemical formula could have a large overlap with the SCF one and the delocali- 
zation energy (difference between the fully localized determinant and the SCF 
wave function) could be of the same order of magnitude than the correlation energy. 
These facts have been proved by ab initio calculations on NH 3 and on other small 
polyatomic molecules [23-25]. 

Then, the question is to improve this wave function. The first idea may be 
to use the single particle approximation to improve the localized molecular 
orbitals, as in the old empirical LCBO systematics [5-7], by taking into account 
their interactions: Hamano perturbed the bond orbitals [26], but this wave func- 
tion does not bypass the SCF result. To do this, one needs a multiconfigurational 
wave function. This may be done by the various pair-approximations [27], 
for instance the Parr and Parks version 1-28], but this technique lacks the effects 
of delocalization and the interbond correlation and does not give very good 
results [23]. The other possibility is to perform the classical configuration inter- 
action, but the dimension of the CI matrix becomes prohibitive rapidly. One 
is compelled to truncate the number of MO's used [23] or the basis of configura- 
tions [24]. 

In fact, the perturbation technique indicates a rational way to truncate CI 
matrices [29] and enables one to get rapidly reasonable estimates of the exact 
energy in the corresponding basis set. 

The procedure we propose may be decomposed into four steps: 
1. One builds a set of reasonable bond orbitals, both bonding and antibonding. 
2. One uses the bonding orbitals to construct a fully localized determinant. This 

determinant will be the zeroth order wave function. 
3. One uses the antibonding orbitals to build excited states (mofio-, di-excited 

states). The CI matrix is considered to be constructed on such a basis of configurations. 
4. One develops the lowest eigenvalue and eigenstate by a Rayleigh-Schr6dinger 

perturbation expansion. 
We want to show that the combined use of localized molecular orbitals and 

a perturbation development of the CI matrix leads to special advantages: 
Each step of the process and each type of terms in the series of the ground 

state energy has a clear physico-chemical interpretation in terms of bond inter- 
action. This has been pointed out long time ago by Sinano~lu [30, 31] concerning 
the bond and lone pair correlation energies, and the intramolecular Van der Waals 
interactions. The changes in the Hartree-Fock potential (and therefore in the SCF 
localized MO's) are responsible for slight changes in the intra-bond and inter- 
bond correlation energies when one goes from one molecule to another. Our 
fully localized orbitals should be less dependant on the environment and the trans- 
ferability of our contributions should be improved. 

The integrals involving localized orbitals are of different orders of magnitude 
according to their nature and introduce possible supplementary simplifications 
at each order of the perturbation expansion. 

The purpose of this paper is to present the framework of the method and to 
give some details about the perturbation series and techniques used hereafter. 

The second paper of the series gives algebraic and numerical applications 
to ~ conjugated systems. We show the relations between the perturbation ex- 
pansion (and the related Goldstone's diagrams) and the chemical graph (i.e. 
1" 
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the molecular topology). Comparison is made with the full CI  in the same basis 
set, to study the convergence process. 

The third paper is devoted to sigma systems, using the CN D O  approximations 
of the integrals. The general formulae are given together with numerical applica- 
tions. 

The fourth paper studies the stability of the method with respect to the choice 
of the bond orbitals: the role of hybridization and of bond polarity on energies 
at different orders is investigated. 

In a fifth paper the density matrix at different orders is analyzed, and mono- 
electronic observables are calculated. 

2. Description of the Method 

A. Choice of the Bond Orbitals and of the Zeroth Order Determinant. One 
uses molecular orbitals which are defined on the chemical bonds. For  instance, 
if we work in a minimal basis set, we may define one bonding and one antibonding 
orbital for each chemical bond. If we consider the ethylene molecule for instance, 
one may define 4 C[-I bonding and 4 CH antibonding orbitals, 1 C-C  a and 
1 C - C  n bonding orbitals and their corresponding antibonding orbitals. If one 
includes the ls orbitals in the basis set, they may become innershell lone pairs. 
For  the formaldehyde molecule in the minimal basis set one also defines two lone- 
pairs among the valence electrons on the oxygen-molecule. In the minimal basis 
set no antibonding orbital corresponds to the lone pairs. If we use an extended 
basis set, for instance 3p= atomic orbitals in the ethylene molecule, we may use 
them to define two unoccupied orbitals - one symmetrical and one antisymmetri- 
cal - ,  or two unoccupied lone-pairs. The use of an extended basis set does not 
present any difficulty within the framework of this method. 

The bond molecular orbitals may be more or less refined. One may build 
them with special diatomic wave functions [32] or simply by a proper combination 
of two atomic (hybrid) orbitals. For  instance the C-C  a bond orbitals in ethylene 
may be represented with two atomic canonical sp 2 hybrids with equal weights, 
or with optimized hybrids [25]. The main problem concerns the orthogonality 
of the basis set. The fully localized bond orbitals are not orthogonal in general. 
If one applies for instance a S -1/2 orthogonalization procedure, they become 
delocalized in a way which depends on the molecule. The orthogonal bond or- 
bitals depend on the geometry and the environment and have "tails" over the 
whole framework of the molecule. For  n systems however, Fisher Hjalmars [-33] 
proved that one could define, quasi orthogonal atomic orbitals which lead to the 
so-called Pariser-Parr-Pople approximations of integrals. Such approximations 
have been accepted as valid for ~ orbitals and are used in the CNDO hypothesis. 
In fact the a atomic orbitals are very far from orthogonality (S = 0.6), but the over- 
lap between fully localized bond orbitals never exceeds 0,2, and the a bond orbitals 
may be considered to be as orthogonal as the n atomic orbitals. This approxima- 
tion should be much better than the very crude CN D O  hypothesis, since it does 
not suppose the neglect of the overlap in the chemical bond. Later applications [-341 
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will be devoted to the cases where overlap between bond orbitals is taken into 
account, but we shall mainly consider the case where Pariser-Parr type approxi- 
mations are valid. 

For  aromatic systems like benzene, the choice of the bond orbitals is arbitrary: 
one may choose for instance one K6kul6an formula or the other. Both will lead to 
the same development. In naphtalene one may built different types of k6kul6an 
like formulas, which are not equivalent. The symmetry conditions sometimes favour 
one of these graphs, but it is not always possible to satisfy them (cf. the anthracene 
molecule). The criterion for the choice of the zeroth order fully localized wave 
function is its energy and one may analyse the convergence of the process by 
comparing the results obtained from different reasonable zeroth order wave 
functions. This degree of freedom does not exist for o- systems. 

For  o- systems there is a degree of freedom in the choice of the hybrids which 
are used to built the bond orbitals. For  open chain molecules and unstrained cycles 
the classical sp 2 o r  sp 3 hybridization state may be used. The question becomes 
more important  for strained molecules and a certain research for the best hybridi- 
zation becomes necessary. The. influence of the hybridization on the process will 
be studied in paper IV. For  conjugated systems one may consider to use two sets 
of orbitals to represent the double bonds: a pair of equivalent C - C  bonds or a 
7c and a ~r bond. The results apparently favour the classical o- - rc representation [34]. 

For  heteroatomic systems one must also choose the polarity of the bond or- 
bitals. The relative accuracy of the vector model of bond dipole moments  to con- 
struct the molecular dipole moment ,  indicates that the polarity of a given bond 
is mainly determined by the nature of the two atoms, and that the other bonds 
only slightly perturb the electronic distribution in the bond. This is also confirmed 
by the content and the success of Del Re's picture [35]. Thus we propose to deter- 
mine a canonical polarity for each type of bond from calculations on small systems 
or bond dipole moments,  and use it as a basic parameter  each time we meet this 
type of bond: Then the bonding and antibonding orbitals on bond i may be re- 
presented with two hybrids i t and i 2 by the linear combination 

i=c~ii  + f l i  2 , 

i* = fl'i 1 - -  o ( i 2 ,  

where c~, fl, fl', ~' satisfy the orthonormali ty conditions and determine the polarity. 
When one has choosen the bond orbitals, here suppose d to be orthogonal, 

one builds the zeroth order determinant with the n bonding orbitals. 

1 
~ ~  2]/2]/2~.~ 111...i7...n~1. 

The energy of this determinant is simply calculated as the mean value of the Hamil-  
tonian. 

B. Conf igurat ion In terac t ion .  Then we may built mono  excited configurations 
by "promoting one electron" from the bond orbital i to the antibonding orbital 
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j* or diexcited configurations from orbitals i and k to the antibonding orbitals 
j* and l*. 

( ~ )  1 [ l l . . . i j*. . .ng[ 
- 2]/2~.I 

, 
4) = ~ l l ] . . . i j * . . . k T * . . . n ~ [ .  

Tri, quadri excited states and so on may be constructed in this way, all being 
orthogonal. Only mono- and diexcited states interact with ~o since the total 
Hamiltonian H is only bielectronic. If ~o represents a satisfactory representation 
of the wave function, one may write, using Rayleigh Schr/Sdinger perturbation 
theory: 

~'J~ E o -  E ikj'~z* E o _  E 

eo I-HI �9 eo Inl �9 t , ~ ) /  

E ~ < ~ o l H l ~ o ) +  ~ (~___*) + ~ E(J_*I*~ 

(for the definition of the unperturbed and perturbation Hamiltonians, see w 3, 3). 
These formulae are always valid if q~0 is a good starting point, and the MO's 
may be delocalized. If the ground state is a SCF determinant, the monoexcited 
states have zero matrix elements with q~o. 

We would like to recall here the simple physical significance of each term and 
some simplifications introduced by the localization: 

The interaction with ~ (~-) introduces a change of the polarity of the bond, 

under the influence of the environment. These states are the polarization states 
and give rise to the polarization energy. 

The interaction with ~ ( ~ )  delocalizes the electrons from bond i to the 

region of bond j. They may be called the delocalization or charge transfer states. 

The difference between the amount  of i ~ ( ~ ) a n d  t ~ ( ~ ) i n  the wave function 
",d / 

gives the charge migrations in the molecule from bond to bond. 
The wave function limited to the monoexcited states 

~ 

should in principle differ only by second order terms from the molecular SCF 
wave function. 
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C. Simplifications Introduced by the Use of  Bond OrbitaIs. The diexcited states 
will enable the perturbed wave function to bypass the SCF determinant and intro- 
duce a part of the so-called "correlation energy". One may distinguish several 
terms in it, according to their order of magnitude and physical significance. 

/ . . / i . 7 . ' ~ \  
The excitation may involve one bond only [excitation[ 7 ~ - ] ] .  This leads to 

\ v ~ / /  
the matrix element 

(oo oC  : = , , , , . i . ,  
\ l  z / /  

This integral may be important (several eV) and is responsible for most of the 
intra bond correlation energy [30, 17]. 

The excitation may involve two different bonds, i and j. Let us consider first 

the excitation - -  The integral is given by 
\ i  j I" 

= (ij] i ' j*) if i and j have different spins 

= (i j I i ' j*) - (ij l J* i*) if i and j have the same spin. 

(ij]i*j*) represents the interaction between the dipolar distribution ii* and the 
dipolar distribution j j*. It decreases as r -3 when the distance r between bonds i 
and j  increases and gives raise to most of the interbond dispersion energy or inter- 
bond correlation energy [30, 17]. 

On the contrary, the exchange integral (ij I J* i*) represents the interaction be- 
tween the distributions i j* and i*j. These distributions have very small amplitudes if 
the overlap between the bond orbitals i and j is small. The integral may be con- 
sidered of order S 2 if one evaluates it by the Mulliken approximation. It is zero 
if one supposes the ZDO between the bond orbitals. If we consider the excited 

state \ i  i ~  for instance, the integral (i i I i 'j*) may be expressed by 

0.5Si i . [ ( i j* l i* j*)+( i i  ] i*i*)]. It is of order S compared with (iil i'i*). If the 
bond orbitals are supposed to have zero differential overlap (or defined o n  sep- 
arate domains)  this integral is zero. In general only the integrals (ij] k ' j*)  lead 
to integrals of order 1 in S. All the other integrals implied in the second order 
energy (ij I k* l*) lead to integrals of order 2 in S. I f  one uses the ZDO approxima- 
tion between bond orbitals, the n 4 integrals (ij I k* l*) are zero, and only n 2 integrals 
((] I i ' j*) are different from zero: the use of localized orbitals leads to an enormous 
reduction of the number of non zero integrals. If one does not neglect the overlap 
between the bond orbitals one has a serious criterion to truncate the basis set 
according to the S power of the integrals involved. Using the perturbation technique 
one may use different approximations at the different orders of the perturbation 
expansion and may, for instance, consider all the integrals to the order of S 2 
in the 2 na order energy correction, only the integrals in S 1 in the third order cor- 
rection, and the few S o integrals in the fourth order energy correction. 
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Thus, the use of bond orbitals enables one to make a rational series of ap- 
proximations according to the order of magnitude of the integrals. If one assumes 
the ZDO between bond orbitals, there is an enormous decrease in the number of 
integrals and one may go further in the perturbation calculation of the ground 
state energy than one could do using SCF orbitals. Moreover, at each order in the 
perturbation expansion, the energy correction may be decomposed in different 
contributions, each of them having a clear physical significance. 

As to the computation time one may recall that in the ZDO approximation 
each SCF process iteration requires the calculation of n 2 elements Jij each of them 
requiring a calculation o v e r  n 2 elements gpq. The computation time increases 
as n 3. The second order energy calculation requires the calculation of n 4 matrix 
elements (ij I k* l*), each of them being computed by a double summation. However 
this step may be reduced from n 6 t o  n 5 [36]. 

In our procedure each element Jij only requires a summation over four or- 
bitals: the computation time of each J~j does not increase with the dimension. 
The calculation of the zeroth order energy only increases as n z, as does the cal- 
culation of the 2 nd order energy since it only requires the calculation of (ij I i ' j*) 

and i f -  + h j* . The calculation of the 3 rd order correction needs a time 

proportional to n 3 and so on: for large systems one obtains a much better energy 
than the SCF one, in a much shorter time. 

3. Perturbation Technique 

t. , Diagramatic Representation 

A. Usual Conventions Concerning Diagrams. Following Feynman's [373 
original treatment, different diagramatic representations of perturbation expan- 
sion terms are used. For  the many body problem in the time independent formalism 
three kinds of diagrams are well known: Brueckner diagrams [383, Goldstone 
diagrams [393 and Hugenholtz diagrams [40]. We are going to use Goldstone's 
formalism just as a mnemomic and visualizing device. Let us recall briefly the 
principles of diagramatic representation since most quantum chemists are not 
familiar with them: 

a) A matrix element in a basis of mono- or bi-particle functions can be for- 
mally said to represent a transition of one or two particles from initial to final 
states, taking place under the influence of the operator. 

Contrary to the usual convention (which is the normal one when the second 
quantization formalism is used) we consider that initial states are on the left 
side of the matrix element in the Dirac notation. 

b) These virtual transitions are represented by points, one for each particle, 
which are the nodes of the diagram. 

c) The interaction, due to the operator, is represented by a horizontal dotted 
line originating from one node or joining two nodes, according to the mono 
or bieleetronic character of the operator. In the monoelectronic case, we put a 
cross to end the dotted line, in order to distinguish these diagrams from similar 
diagrams defined in w B. 
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d) At each node  there are two vertical oriented and labelled full lines. 
e) We orientate the lines as follows: an upward  line represents the propa-  

gat ion of  a particle in a virtual orbital, a downward  line represents the propaga-  
t ion of  a particle in a g round  state occupied orbital. 

f) At  a node  the particle in the initial state is destroyed and the particle in 
the final state is created. Destruct ion and creation correspond to lines coming 
to or from the node 1. 

g) Indexes at the same place on both  sides of  the opera tor  (in the matrix ele- 
ment) correspond to the same node:  for example, in (ij rvl kl) (see Fig. 1), i (de- 
stroyed) and k (created) correspond to the first node, and similarly j (destroyed) 
and l (created) cor respond to the second node. These principles are illustrated 
in Fig. 1. 

�9 .X --x t,,/Xi .X . . . .  X 
<i Ihl i) k/ilhlj *) ( j* lhl  i~> <j*lhlk*) 

. 2 ' v ' "  ' >  .... 
2 <  . . . . . . . . . . . . . .  , 

<:jIvlkl> <ij Ivlk*t*) <i]lvl]l) 
Fig. 1. Graphical representation of matrix elements 

To visualize the sequences of  interactions that  occur  in per turbat ion theory, 
giving rise to clusters of  matrix elements, one represents diagramatically in a 
vertical order  each matrix element after the other  f rom left to right in the formula. 
A d iagram corresponding to such a cluster has only closed propaga t ion  lines, 
since the system must  come back to the unper turbed state after all the virtual 
transitions have taken place. The denomina to r  of  the corresponding term of the 
per turbat ion  series is the p roduc t  of  the energy differences between the unper-  
turbed state and each of  the excited states got  between two successive interaction 
lines. Fig. 2 give some typical examples. 
A linked diagram (corresponding to a linked cluster) is a diagram in which one 
may  go from any node  to any other following interaction and propaga t ion  lines. 
Unl inked diagrams can be drawn as separate parts. In  Fig. 2b  we have an un- 
linked fourth order  diagram. 

1 We must remark that these principles which lead to diagrams like those defined in Goldstone's 
work do not imply a true hole-particle formalism: we destroy a particle in an occupied state and do 
not create a hole in our diagrams. Goldstone's original formulation suffers from this contradiction 
which is only a real problem in the second quantization formalism. 

2 This "exchange diagram" is usually drawn as: 

o r  

j L l 

which is misleading if one tries to interpret it directly according to the above rules. 
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The sign of the final contribution of a given diagram is given by the rule 
( - 1 )  h+z where h is the number of hole (downwards) propagation lines, and l 
the number of loops of the diagram. 

B. Correspondance of  Diagrams with the Rayleigh-Schr6dinger Expansion. 
For  our present purpose, it is more convenient to use the ordinary form of the 
Rayleigh-SchrSdinger perturbation expansion. The n t~ order correction to the 
energy involves a general sum which is built using products of n matrix elements 
between configurations: 

2 '  Z '  Z '  (l~~ lYe ~ i )  ( ~ i  Ire ~s )  "" (I~M iV] ~o)  

where I7 means that ~b o is excluded from the summation and special terms each 
of them involving corrections of lower orders to energy and the wave function 

J IIIII!V' 
c) 

(ij I i ' j*) (j* i* I J i) 
i ' j* 

E o  - E 

(ij I i ' j*) (k I [ k* l*) (]* i* ]j i) (l* k* I k l) 

Z j - /  3 ij k t 
- E  

k,{" ~ ,  , . . . . .  X (i Ihlj*) (j* Ih[ k*) (k* Ihl i) 
. . . .  

X./ . . . . . . . .  X 

Fig. 2. Graphical representation of typical perturbation terms 

(Dupont-Bourdelet [41], Messiah [24]). Each term of these sums may be re- 
presented by a diagram analogous to (but not identical with) the Goldstone 
diagrams just described. Each interaction line corresponds to the transition of a 
configuration to the following one; since two consecutive configurations may 
differ by one or two spin orbitals, we put one node or two nodes respectively, 
on the interaction line. The labelling conventions for the full lines are the same as 
previously. Therefore the new diagrams (hereafter designed as Rayleigh-Schr6din- 
get diagrams, or more briefly RS diagrams) differ graphically from the Goldstone 
ones by the fact that there may be neither a loop nor a cross on an interaction line. 
Now V is the sum of a monoelectronic part ~" h(i) and of a bielectronic part 

i 
V(i,j), so that every matrix element (~br~lVI ~br) is generally the sum of mono- 

i , j  
electronic and bielectronic integrals, and the whole numerator  appears therefore 
as a sum of products of mono- or bielectronic integrals and, dividing by the 
denominator,  the whole Rayleigh-SchriSdinger term appears as a sum of terms 
which correspond exactly to the Goldstone diagrams. Therefore, generally 



Localized Bond Orbitals and the Correlation Problem. I ll 

speaking, each of the RS diagrams we have introduced corresponds to a sum of 
Goldstone diagrams. 

If ~ :  and ~L differ by two spin orbitals, (~K I vI ~L) reduces to one bielectronic 
coulomb integral and, eventually, an exchange integral. Since the exchange 
integrals are zero in our case (ZDO assumptions), we are left with the coulomb 
integral; this shows that an interaction line with two nodes in the RS diagram 
gives an identical interaction line in all corresponding Goldstone diagrams. 

Now, if ~ and ~L differ by one spin orbital (this case is represented by an 
interaction line with a single node), then 

(~KlVlq)L)=( i~lh l iL)+ ~ (i~mlveliLm), 

where Ve(l,a~ = V(1,2 ~ (1 -P12)  in order to include exchange. 
Therefore, an interaction line with a single node corresponds to a sum of 

Goldstone diagrams, one with a cross on the interaction line and the others 
with two nodes on it. 

Due to the ZDO assumptions and the use of localized orbitals, if i K and i L 
do not belong to the same bond (for example ir = i, iL =j*), all bielectronic inte- 
grals in the above formula are zero, so that the correspondance between the two 
kinds of diagrams becomes very simple in this case: it is sufficient to put a cross 
on the interaction line of an RS diagram with a single node in order to obtain the 
unique non zero Goldstone diagram. 

On the other hand, if i~: and iL belong to the same bond (for example iK = k, 
i z = k*), then both monoelectronic and bielectronic parts are non zero. This is 
the only case (in our problem) in which an RS diagram represents a sum of more 
than one Goldstone diagrams. 

Moreover, we shall suppose here and in the applications on alternant hydro- 

(0 (k,)) carbons that the bond orbitals have a correct polarity i.e. [VI ~ = 0  so 

that the case under consideration cannot occur for the first and last interaction 
lines. At the 3 rd order, it is also impossible to have this case for the second line 

(due to our assumptions, which imply that only the diexeited States ( i ' J * ]  
/ \ 

\ - i j /  
interact with the ground state configuration). At the 4 TM order, this may happen 
at the second and third lines. 

The use of the correspondance between RS and Goldstone diagrams is 
necessary because the sign rule (cf. end of w A) and the linked cluster theorem 
(cf. next section 3 ~ apply to the second ones only. In the large majority of cases 

there is no single excitation (~---*) on lines 2 and 3 and the sign rule and linked 

cluster selection are directly valid on the RS graphs. In the few cases in which 

the single excitation or diexcitation ~ -  occurs on the 2 nd and 3 ra line, one must 

decompose the RS diagram in its Goldstone components; if the RS diagram is 
linked, all its Goldstone components are linked, but the opposite is not true: 

an unlinked RS diagram involving a single excitation ( kk~-* ) has several Gold- 
stone components which are linked. 
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2. Linked Cluster Theorem 
The expression of the n th order perturbation energy implies a ( n -  1)-uple 

general summation which is written with a product  of matrix elements between 
configurations q~K : 

<go[V[+/> <+,lVl++> <+jlVl + D " "  <+MINI+o> 

I , s , ~  ..... ~t ( E o  - E I )  ( E o  - E j )  ( E  o - EK) . . .  ( E  o - E M )  

and some peculiar terms which involve the lower order corrections to the energy 
(e p) and the wave function (~q), For  instance for the 3 ra and 4 th orders, if we use 
the intermediate normalization ((0[ ~gq> = 0, V q) 

<0IV [ i~i > <1~i [V I i~j> <~)jIV[ 0> _ ~1 < i//1 I ~/1 > (1) 
e3 = ~ (Eo - E,) (E o - Ej) I, J4:O 

<OlVl ~i> < ~llVl ~)J> <t~)JlVl I~)K> <I~KIVI I~o> 
, ,J, ,~+ o (Eo  - E , )  (Eo  - E j )  (Eo  - EK) 

_~1[<~1 I 1t/2> _l_ <~J2 [ t/J1>] __ ~2<t//1 ] I//1> 

(2) 

The linked clugter theorem expresses cancellations between the general summation 
and the peculiar terms. 

In our problem we make <I IV I I ) =  0. Then the linked cluster theorem only 
plays a role at the fourth order through E2 < ~1 [ ~./1 >. It is worthwhile to translate in 
molecular physics terms the illustration given by Brueckner [38] for the case of 
an electron gas. 

The state 4/ in Eq. (2) is characterized by a diexcitation process k ~ - - / "  

Now let us consider the state ~a obtained from a supplementary diexcitation: 

thus we obtain the quadriexcited state ( i'j* k* l* ) ijkl /" It is possible to go down to 
\ 

the ground state by many ways. We shall focuse our attention on two particular 
ways. 

The first one consists in coming back through the same state ~i(~k= qh)- 

This leads to the preceeding unliked diagram and corresponds to the summation: 

. ,~ ~A E (_~_ ) ] A E i ~  ) , - -~  ~ (  -i, j--,-k, l-~ - ) (3) 
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The second one consists in coming back through the state \ ~ ]  and is 

represented by the diagram of Fig. 2 b. It gives the summation 

(4) 

Let us consider now for given i, i*, j, j*, k, k*, I and l* the term in e2( ~[./1] ~/1) 
/" i ' j* \ . [" k* l* \ 

which comes from the contribution of t ~ - ) i n  ( T l l  T1) and of , ,/t--~-) in e2. 

we thus obtain 
(ij I i , j , )2 (k I I k* l,)2 

C= i'j* 2 k* l* " (5) 

�9 ,/i*j*k*l*)i~ E ( i * J ? )  (k*  l*~ Now one may notice that l f A E t -  " =A \ U j + A E \ - - ~ j ( a d d i -  

tivity of transition energies), then 

A + B - C = O .  

The unlinked diagrams contributions cancel with the particular terms. But there 
remain some terms in e 2 ( T  1 [ ~1) which have no corresponding elements in the 
general summation: these are the terms which involve at least one spin-orbital 
common in ez and ( T  1 [ T ~) : for instance we cannot define a quadriexcited state 

( i*j* ~ ( i* k* "~ 
from the two excitations k ~ - j  and \ ik J'  since it would violate the Pauli 

principle. For  the purpose of simplification of the formulation of the linked 
cluster theorem, one sometimes introduces the remaining terms of the peculiar 
products in the general summation, where they give linked Exclusion Principle 
Violating (EPV; see Kelly 10) diagrams. The theorem is then expressed 

e" = 0 V V 0 over all linked diagrams 

where Qo is the reduced resolvent operator [-42]. 
a 

But such a trick would not be useful for our problem and would lead to a 
double number of remaining terms. We shall proceed in a more natural way and 
collect all the terms from - e 2 ( T l [  ~W) which would not be cancelled: we get 
the contribution of the E PV diagrams as the contributions of the states in ~2 ( I~tl ] I//1 
which imply the same spin orbital in e 2 and ( T l l  T1). 

We shall make use of these cancellations between the general sum and the 
peculiar one only for the RS diagrams which reduce to a single Goldstone diagram. 
It is worthwhile to note that the cancellation occurs inside sets of RS diagrams from 
the general sum and one term from the peculiar sum. This property still holds when 
the RS diagram has several Goldstone components. Actually, the question of the 
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cancellation remains to be examined for those RS diagrams which are unlinked; 
as we have seen previously, they have linked and unlinked Goldstone components. 
Let us consider, for example, the three contributions 

. . . .  

E o -- E [Eo  - E 

J 

v_____ from e(2~ from <~m  I 7 jm> 

(c~) (q) @3) 

The unlinked Goldstone components of the two diagrams would cancel with 
most of the terms arising from the peculiar contributions (c3) when the numerator  
is expanded using mono and bielectronic integrals, and the total contribution 
of (q), (c2) and (c3) would be the sum of the linked terms of (cl) and (c2), and of 
the non cancelled terms of(c3). But we may also remark that, owing to our assump- 
tions of a correct polarity, the contributions of(ca) and (c3) are zero, since they both 

involve IV] = 0. The total contribution of (ca), (ca) and (c3) is therefore 

simply equal to that of (q), namely 

j* 2 j ,  j ' k *  a 

- , , - - 7 7 - ) )  

Therefore, concerning the unlinked RS diagrams with linked Goldstone com- 
ponents, we shall proceed by a direct calculation of the whole non zero RS dia- 
grams (note that the three contributions may be zero, as in the following example): 

~ k~i (~,/~ 1 .............. i 'V___L ... . . . .  �9 

" V _ I  ...... 

k iy I k "~ / 

from g2) from <~")1 I//(1)> 
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T h e  2 nd and 3'd contributions are zero since they involve (0IV] ( ~ - ) / a n d  the l st 

\ \ ~ / I  

one involves /(i 31vl(i k*]  0 1 V l  - [(iklik*)+ (ikl:k*)3 \ \ i  j ]  \ ijk ]/ 
+ [ ( i*k l i*k*)  + ( ]*k l j *k* ) ]=O,  since ( i k [ i k* )  = ( i*k] i*k*)  and {]k l j k*)  
= (]*k I J* k*) taking into account the ZDO assumptions i f / a n d  j are not polar. 

3. Perturbation Expansion Used 

In classical correlation problems several partitions of the exact Hamiltonian 
have been proposed. From Moiler and Plesset [43], one generally uses the par- 
tition 

H . . . .  t = H s c F  § V 

and take the Hartree-Fock Hamiltonian as unperturbed Hamiltonian. The 
energy differences in the denominators are then differences between monoelectro- 
nic energies. This implies that there are large diagonal matrix elements in the 
perturbation matrix and makes the perturbation convergence slower [22]. It is 
worthwhile to use another partition, first proposed by Epstein [44] and by 
Nesbet [45] 

H;  = HscF + ~ <~i l r l  ~1) I~1) (~1[ 
1 

r'= v- 2 (~',IVl ex)I~1> (~xl 
I 

where the ~i  are the configurations of the basis. In that case, the energy differ- 
ences in the denominators are differences between mean values of the exact 
Hamiltonian (O~flH;I 0~1) = ('I'11H1'I'i) and (~ IV ' I  ~1) = 0. The main defect 
of this method is that the "transition energies" are no longer additive: the "ex- 

citation energy" due to the diexcited configuration \ ~ - ]  is no longer the sum 

(1) of the excitations energies of the two configurations . . However, we 

have seen that this property was a necessary condition for the validity of the un- 
linked cluster cancellation. 

In our case we can of course define an approximate Hamiltonian as a sum of 
monoelectronic Hamiltonians, of which the FLBO would be eigenfunctions, with 
eigenvalues equal to ei or e*. 

o c c .  

e i = ( i  Ihl i) + ~ (2J~j - g , j ) .  
J 

This zeroth-order Hamiltonian would be of the M011er- Plesset type (see Steiner [46]). 
But it seems less artificial to define the zeroth order Hamiltonian by its 

diagonal elements 

( ~ i  IH~;I g'i) = ( ~ i  IHI ~1)V I 
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a n d  its non -d i agona l  e lements:  

(~xlH~;l~s)--=0,  V I : / : . 1 .  

This par t i t ion  is an  Eps te in-Nesbet  type par t i t ion,  and  does no t  require an  ex- 
pl ici tat ion of the zeroth-order  and  pe r tu rba t ion  Hami l ton ians .  

In  fact we only want  to go to fourth order  of the pe r tu rba t ion  expansion,  and  
we do no t  take care of the defini t ion of the zeroth-order  energies of the configura- 
t ions which are no t  implied at this order. We wan t  to combine  the advantages  of 
the Epste in-Nesbet  par t i t ion  and  of the l inked cluster theorem. This theorem only  
begins to work at the fourth order  in our  problem.  Thus  we define the energies 
of the conf igurat ions  implied in the first order  correct ion a to the wave funct ion 
as the m e a n  values of the exact Hami l ton ian .  This insures the nul l i ty  of all ele- 
ments  ( ~ i  [V"145i) which could appear  in third and  fourth order terms. But we 
shall define the energies of the other  diexcited configurat ions and  of the tri and  
quadriexci ted states in such a way that  the l inked cluster condi t ions  are satisfied. 
It  will be seen in Paper  II that  it is always possible. For  instance we shall use 

E \ - ~ - j  - Eo = - Ei~. - Ekz. 

( j * i * )  
instead of A E \ ~ - }  which is the difference between the two mean  values. This 

procedure  in t roduces  small  d iagonal  terms in the pe r tu rba t ion  matr ix  which 
would  play a role at 5 th and  higher orders. 
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